
3GPP TSG-SA4 Meeting #89
S4-160688
Kista, Sweden, June 27 – July 01, 2016
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	26.442
	CR
	0017
	rev
	-
	Current version:
	13.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	x
	Radio Access Network
	
	Core Network
	x

	

	Title:

	Corrections to EVS Fixed-Point Source Code

	
	

	Source to WG:
	Ericsson LM, Fraunhofer IIS, Huawei Technologies Co. Ltd, Nokia Corporation, NTT,

NTT DOCOMO, INC., ORANGE, Panasonic Corporation, Qualcomm Incorporated, Samsung Electronics Co., Ltd., VoiceAge and ZTE Corporation

	Source to TSG:
	S4

	
	

	Work item code:
	EVS_Codec
	
	Date:
	2016-06-21

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-13

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	During testing the codec, an undesired behavior of the codec was found: Signals exhibiting an extreme inverse spectral tilt, i.e. signals exhibiting a significantly more energy at high frequencies than at low frequencies, could not be reproduced corectly. This leads to a decoded signal which has a different characteristics than the input signal.

	
	

	Summary of change:
	The reason of this misbehavior was found to be in the IGF gain compression mechanism, which in general heavily impacts such signals. Further on, it was found that the gain compression mechanism was not implemented correctly for certain IGF whitening levels.

After extensive testing it is proposed to disable the IGF gain compressor and align the behavior of the IGF whitening-mode “STRONG” to the other whitening modes in case all MDCT coefficients are quantized to 0. This avoids noise-bands popping up in the IGF range, which before were handled using the gain-compressor.

Affected operating-modes:

WB: 9.6 - 13.2 kbit/s

SWB: 9.6 - 128 kbit/s

FB: 16.4 - 128 kbit/s

	
	

	Consequences if not approved:
	Artifacts compromising usability and user-experience may occur in some rare cases in future.

	
	

	Clauses affected:
	c-code/lib_dec/igf_dec.c

	
	

	
	Y
	N
	
	

	Other specs
	x
	
	 Other core specifications

	CR 26.443-0014

	affected:
	x
	
	 Test specifications
	CR 26.444-0012

	(show related CRs)
	
	x
	 O&M Specifications
	

	
	

	Other comments:
	

Start code change 1
diff -rwBu 26442-d20/c-code/lib_dec/igf_dec.c 26442_CR/c-code/lib_dec/igf_dec.c

--- 26442-d20/c-code/lib_dec/igf_dec.c
2016-04-11 22:13:04.000000000 +0200

+++ 26442_CR/c-code/lib_dec/igf_dec.c
2016-06-20 13:34:06.000000000 +0200

@@ -324,13 +324,32 @@

 /* strong whitening detected */

 IF (sub(IGF_WHITENING_STRONG, hPrivateData->currWhiteningLevel[tile_idx]) == 0)

 {

+ Word32 abs_sum;

+ abs_sum = L_add(0, 0);

+

+ FOR(i = strt_cpy; i < hGrid->startLine; i++)

+ {

+ abs_sum = L_add(abs_sum, L_abs(src_spec[i]));

+ }

+

 /* fill igf_spec with random noise */

 tb = hGrid->swb_offset[hGrid->sfbWrap[tile_idx]];

 move16();

+

+ IF (abs_sum != 0)

+ {

 FOR (i = strt_cpy; i < startLine; i++)

 {

 igf_spec[tb++] = L_deposit_l(Random(&hInfo->nfSeed)); /* 31Q0, fill LSBs */

 }

+ }

+ ELSE

+ {

+ FOR (i = strt_cpy; i < startLine; i++)

+ {

+ igf_spec[tb++] = L_add(0, 0);

+ }

+ }

 /* set exponent of the current tile, random noise is 31Q0 */

 igf_spec_e[tile_idx] = 31;

@@ -513,9 +532,6 @@

 Word16 w0; /* Q15 | float value: 0.201f */

 Word16 w1; /* Q15 | float value: 0.389f */

 Word16 w2; /* Q15 | float value: 0.410f */

- Word16 comp_th; /* Q0 | compression threshold */

- Word16 comp_ratio; /* Q0 | compression ratio as shift, original value: 256 */

- Word16 comp_offset; /* Q0 | comp_offset = comp_ratio * comp_th - comp_th; */

 Word16 dE; /* Q31 | energy below igfBgn */

 Word16 dE_e ; /* | exponent of dE */

 Word16 gn; /* Q0 | gain read from bitstream + processing */

@@ -555,12 +571,6 @@

 move16();

 w2 = 13435;

 move16();

- comp_th = 1;

- move16();

- comp_ratio = 8 ;

- move16();

- comp_offset = 255;

- move16();

 dE = 0;

 move16();

 dE_e = 0;

@@ -983,30 +993,6 @@

 gain_e[sfb] = s;

 move16();

- /* apply gain compression, comp_th is 15Q0 */

- tmp = s_min(15, sub(15, gain_e[sfb])); /* 15Q0 | shift for the compressor constants which are in 15Q0 */

- BASOP_SATURATE_WARNING_OFF

- tmp = shl(comp_th, tmp); /* | tmp may saturate (tmp is the shifted compressor threshold): */

- /* | if gain -> 1, no overflow will occur */

- /* | because gain_e = [15, 0] otherwise: gain >= 2(gain_e >= 16), gain < 1 (gain_e <=0) */

- /* | if gain -> 0, overflow of tmp may occurr, but it doesn't matter: */

- /* | then "if ((tmp = 0x7fff) > gain)" results the same as "if ((tmp = 1) > gain)" */

- /* | because gain is smaller than 1 and therefore smaller than 0x7fff */

- /* | if gain -> Inf, overflow may occur, but ut doesn't matter: */

- /* | then "if ((tmp = 0x0000) > gain)" results the same as "if ((tmp = 1) > gain)" */

- /* | because gain is larger than 1 and therefore larger than 0x0000 */

- BASOP_SATURATE_WARNING_ON

- IF (sub(gain[sfb], tmp) > 0)

- {

- gain_e[sfb] = BASOP_Util_Add_MantExp(gain[sfb],

- gain_e[sfb],

- comp_offset,

- 15,

- &gain[sfb]);

- move16();

- gain_e[sfb] = sub(gain_e[sfb], comp_ratio);

- move16();

- }

 /* get the maximal exponent of the gain array, needed for exponent adjustment of the spectrum */

 maxGain_e = s_max(maxGain_e, gain_e[sfb]);

End code change 1
